2019 CARIS 1 Primary and Additional Metrics

Chen Yang Senior Planning Engineer

ESPWG

Nov.18th , 2019

Production Cost Savings(2019 \$M)

Study	Ten-Year Production Cost Savings (\$M)					
	Transmission	Generation	Demand	Energy		
	Solution	Solution	Response	Efficiency		
Study 1: Central East	115	103	17	1,061		
Study 2: Central East-Knickerbocker	117	110	17	1,061		
Study 3: Volney Scriba	22	137	9	530		

	2019-2023 Production Cost Savings (\$M)					
Study	Transmission Solution	Generation Solution	Demand Response	Energy Efficiency		
Study 1: Central East	86	46	9	542		
Study 2: Central East-Knickerbocker	86	51	9	542		
Study 3: Volney Scriba	12	54	4	272		

Study	2024-2028 Production Cost Savings (\$M)					
	Transmission	Generation	Demand	Energy		
	Solution	Solution	Response	Efficiency		
Study 1: Central East	29	57	8	519		
Study 2: Central East-Knickerbocker	31	59	8	519		
Study 3: Volney Scriba	10	83	4	258		

©COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED

NEW YORK INDEPENDENT SYSTEM OPERATOR

Energy Efficiency Solution Cost Updates

- Base generic cost estimates derived from TO filings at the NYSDPS for their Utility Energy Efficiency Programs
 - Case No. 15-M-0252, Clean Energy Dashboard Scorecard Report
- Both Incentives & Services and Program Implementation costs are included
- Weighted cost estimates by each utility's share of zonal peak loads
- High/low estimates +/- 25% of mid-level costs

Energy Efficiency Solution Cost Updates

Zone	Cost Range	M\$/per 100 MW
	Low	368
F	Mid	490
	High	613
	Low	349
G	Mid	465
	High	581
	Low	589
J	Mid	785
	High	981

Preliminary Solution Benefit-Cost Analysis

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED.

Benefit-Cost Analysis

- Present Value of Production Cost Savings is calculated over the Study Period using a discount rate of 7.08%
 - Discount rate is equal to an average of the Transmission Owners' Weighted Average Cost of Capital (WACC) (weighted by 2018 load (GWh))
- For the Transmission and Generation Solution Costs, Overnight Costs are multiplied by a Capital Recovery Factor (CRF)
 - Assumes a levelized generic carrying charge of 16% for transmission and generation solutions and a discount rate of 7.08%, resulting in the CRF of 1.16
- Benefit/Cost Ratios are reported for each solution, based upon 10 years of projected NYCA-wide Production Cost Savings (the primary CARIS metric) compared to the estimated 10 years of project costs

Solutions Costs(2019 \$M)

	Mid-Range Solution Costs (\$M)					
Study	Transmission Solution	Generation Solution	Demand Response	Energy Efficiency		
Study 1: Central East	591	695	270	2,525		
Study 2: Central East-Knickerbocker	634	782	270	2,525		
Study 3: Volney Scriba	70	608	50	955		

Solutions Costs(2019 \$M)

	Low-Range Solution Costs (\$M)					
Study	Transmission Solution	Generation Solution	Demand Response	Energy Efficiency		
Study 1: Central East	394	522	203	1,894		
Study 2: Central East-Knickerbocker	423	585	203	1,894		
Study 3: Volney Scriba	46	458	38	716		

Solutions Costs(2019 \$M)

	High-Range Solution Costs (\$M)					
Study	Transmission Solution	Generation Solution	Demand Response	Energy Efficiency		
Study 1: Central East	739	869	338	3,156		
Study 2: Central East-Knickerbocker	792	979	338	3,156		
Study 3: Volney Scriba	87	759	63	1,194		

Ratio of Production Cost Savings to Solutions Costs for Transmission Solutions

Study	2019-2023			2024-2028		
	High	Mid	Low	High	Mid	Low
Study 1: Central East	0.20	0.25	0.37	0.09	0.12	0.18
Study 2: Central East-Knickerbocker	0.20	0.25	0.37	0.09	0.11	0.16
Study 3: Volney Scriba	0.24	0.30	0.44	0.28	0.35	0.52

Ratio of Production Cost Savings to Solutions Costs

	Mid-Range Solution					
Study	Transmission Solution	Generation Solution	Demand Response	Energy Efficiency		
Study 1: Central East	-	0.15	0.06	0.42		
Study 2: Central East-Knickerbocker	-	0.14	0.06	0.42		
Study 3: Volney Scriba	-	0.23	0.18	0.55		

Ratio of Production Cost Savings to Solutions Costs

	Low-Range Solution					
Study	Transmission Solution	Generation Solution	Demand Response	Energy Efficiency		
Study 1: Central East	-	0.20	0.08	0.56		
Study 2: Central East-Knickerbocker	-	0.19	0.08	0.56		
Study 3: Volney Scriba	-	0.30	0.24	0.74		

Ratio of Production Cost Savings to Solutions Costs

	High-Range Solution					
Study	Transmission Solution	Generation Solution	Demand Response	Energy Efficiency		
Study 1: Central East	-	0.12	0.05	0.34		
Study 2: Central East-Knickerbocker	-	0.11	0.05	0.34		
Study 3: Volney Scriba	-	0.18	0.14	0.44		

Demand Congestion (2019\$M)

	Base Case	Ten-Year NYCA Demand Congestion Change (2019 \$M)				
Study	Demand	Transmission	Generation	Demand	Energy	
-	Congestion	Solution	Solution	Response	Efficiency	
Study 1: Central East	4,324	(786)	22	(19)	(220)	
Study 2: Central East-Knickerbocker	4,324	(780)	(3)	(19)	(220)	
Study 3: Volney Scriba	4,324	-	251	(2)	(109)	

	Base Case	2019-2023 NYCA Demand Congestion Change (2019 \$M)						
Study	Demand	Transmission	Generation	Demand	Energy			
	Congestion	Solution	Solution	Response	Efficiency			
Study 1: Central East	3,434	(627)	1	(16)	(169)			
Study 2: Central East-Knickerbocker	3,434	(627)	(26)	(16)	(169)			
Study 3: Volney Scriba	3,434	14	133	(1)	(94)			

	Base Case	2024-2028 NYCA Demand Congestion Change (2019 \$M)						
Study	Demand Congestion	Transmission Solution	Generation Solution	Demand Response	Energy Efficiency			
Study 1: Central East	890	(160)	21	(3)	(51)			
Study 2: Central East-Knickerbocker	890	(153)	23	(3)	(51)	W YORK		
Study 3: Volney Scriba	890	(13)	118	(1)	(14)	DEPENDENT		

©COPYRIGHT NYISO 2019. ALL RIGHTS RESERVED

CARIS 1 Additional Metrics

Per Attachment Y, Section 31.3.1.3.5

LBMP Load Costs

- Change in total load payments
- Total load payments include the LBMP payments (energy, congestion and losses) paid by electricity demand (load, exports)

Generator Payments

- This metric measures the change in generation payments by measuring only the LBMP payments (energy, congestion, losses)
- Thus, total generator payments are calculated for this information metric as the sum of the LBMP payments to NYCA generators and payments for net imports

CARIS 1 Additional Metrics

Reduction in Losses

 This metric calculates the change in marginal losses payments. Losses payments are based upon the loss component of the zonal LBMP load payments.

TCC Payments

• The TCC payment metric is calculated as the change in load payments minus the sum of the generator payments and the net import payments. This is not a measure of the Transmission Owners' TCC auction revenues.

Emission Costs

 This metric measures the change in the total cost of emission allowances for CO₂, NO_x, and SO₂, emissions on a zonal basis. Total emission costs are reported separately from the production costs. Emission costs are the product of forecasted total emissions and forecasted allowance prices.

Solution type	Study	Load Payments	Generator Payments	TCC Payments	Loss Payments
Transmission		215	233	(212)	(25)
Study 1	Generation	(117)	(88)	(26)	17
	Demand Response	(69)	(51)	(15)	(3)
	Energy Efficiency	(1316)	(1165)	(99)	(64)
Study 2	Transmission	264	271	(206)	(16)
	Generation	(109)	(61)	(38)	(17)
	Demand Response	(69)	(51)	(15)	(3)
	Energy Efficiency	(1316)	(1165)	(99)	(64)
	Transmission	(54)	384	(432)	13
Study 3	Generation	(228)	122	(319)	55
	Demand Response	(29)	(23)	(5)	(1)
	Energy Efficiency	(612)	(562)	(43)	(12)

	NYCA CO ₂ Emission Change									
Study	Transmission Solution		Generation Solution		Demand Response Solution		EE Solution			
	Tons	Cost (\$M)	Tons	Cost (\$M)	Tons	Cost (\$M)	Tons	Cost (\$M)		
Study 1: Central East	455	3	1,319	8	(173)	(1)	(11,177)	(61)		
Study 2: Central East- Knickerbocker	650	4	1,149	7	(173)	(1)	(11,177)	(61)		
Study 3: Volney Scriba	163	1	1,718	10	(77)	(0)	(5,234)	(29)		

	NYCA NO _x Emission Change									
Study	Transmission Solution		Generation Solution		Demand Response Solution		EE Solution			
	Tons	Cost (\$M)	Tons	Cost (\$M)	Tons	Cost (\$M)	Tons	Cost (\$M)		
Study 1: Central East	381	0	738	0	(221)	(0)	(4,043)	(0)		
Study 2: Central East- Knickerbocker	465	0	462	0	(221)	(0)	(4,043)	(0)		
Study 3: Volney Scriba	(387)	0	632	0	(66)	(0)	(1,567)	(0)		

	NYCA SO ₂ Emission Change									
Study	Transmission Solution		Generation Solution		Demand Response Solution		EE Solution			
	Tons	Cost (\$M)	Tons	Cost (\$M)	Tons	Cost (\$M)	Tons	Cost (\$M)		
Study 1: Central East	2,071	0	615	0	6	0	(153)	(0)		
Study 2: Central East- Knickerbocker	2,189	0	563	0	6	0	(153)	(0)		
Study 3: Volney Scriba	203	0	(303)	(0)	(52)	(0)	(14)	(0)		

Additional Capacity Metric: ICAP Costs

- Per Attachment Y, Section 31.3.1.3.5.6
- Calculate the NYCA MW impact of the generic solution on LOLE
- Forecast the installed capacity cost per megawatt-year point on the ICAP demand curves in Rest of State and in each locality for each planning year
- There are two variants for calculating this metric, both based on the MW impact
 - For Variant 1, the ISO measured the cost impact of a solution by multiplying the forecast cost per megawatt-year of Installed Capacity (without the solution in place) by the sum of the megawatt impact
 - For Variant 2, the cost impact of a solution is calculated by forecasting the difference in cost per megawatt-year of Installed Capacity with and without the solution in place and multiplying that difference by fifty percent (50%) of the assumed amount of NYCA Installed Capacity available

Capacity Metric

Study	Solution Type		Y2028 MW	ICAP Savings (2019 \$M)			
		J	G-J	к	NYCA	Variant 1	Variant 2
	Transmission	-	-	-	-	-	-
Study 1	Generation	54	81	29	220	66	524
Study I	Demand Response	122	182	66	493	149	1,158
	Energy Efficiency	142	212	77	574	173	1,345
	Transmission	-	-	-	-	-	-
Study 0	Generation	54	81	29	220	66	524
Study 2	Demand Response	122	182	66	493	149	1158
	Energy Efficiency	142	212	77	574	173	1345
Study 3	Transmission	-	-	-	-	-	-
	Generation	54	81	29	220	66	524
	Demand Response	30	44	16	120	36	288
	Energy Efficiency	36	54	19	145	44	347

Feedback/Comments?

Email additional feedback to: CYang@nyiso.com

Our mission, in collaboration with our stakeholders, is to serve the public interest and provide benefit to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policymakers, stakeholders and investors in the power system

